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Abstract: A new axially dissymmetric bis(triarylphosphine) ligand 7,7’-bis(diphenyl- 

phosphino)-2,2’-dimethoxy-l,l’-binaphthyl has been synthesized in enantiomerically pure form. 

Axially dissymmetric 2,2’-disubstituted l,l’-binaphthyl compounds have been successfully used as chiral 

elements for a variety of asymmetric transformations. 1 These kinds of molecules serve as stoichiometric chiral 

auxilliariestbsc as well as ligands in transition metal-catalyzed asymmetric processes.la.d-f There are, however, 

very few examples of the use of the corresponding 7,7’-disubstituted derivatives.2 Since small modifications of 

structures and electronic properties of chiral ligands are often reflected in the efficiencies of the asymmetric 

reactions,3 we designed and synthesized a new type of diphosphine ligand 1. This ligand is notable in that it has 

phosphine substituents at 7- and 7’-positions of binaphthyl moiety instead of at the conventional 2- and 2’- 

positions as in the case of BINAP (BINAP = 2,2’-bis(diphenylphosphino)-l,l’-binaphthyl). Compound 1 is 

expected to form transition metal complexes with larger bite angle P-M-P than BINAPP so metal complexes of 

1 might have different properties as catalysts for asymmetric reactions from those of BINAP. 

Enantiomerically pure (R)- and (S)-1 were prepared starting from 2,7-naphthalenediol (2) as outlined in 

Scheme 1. Oxidative coupling of the monobenzylated compound 32b was conducted with FeCl3 in a mixture of 

acetonitrile and water (1 : 2) to give (f)-4 in 47% yield. When Mn(acac)g (acac = acetylacetonate) was used as 

oxidizing agent,2b the subsequent work up procedure was somewhat troublesome for us and the product (f)-4 

was obtained in poor yield (ca. 10%). 
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(S)-4(crude) 

(k)-4 

(S)-5 (S)-5 

(S)-(-)-7 (Sk(-)-5 

Scheme 1 

(Sk(+)-1 

Reagents and condirions: (a) PhCHzBr, K2CO3, DMF, 35 ‘C. (b) FeC13, H20/CH$N (2:1), 90 “C, 1 h, 47%. 

(c) i) quinine, EtOH. ii) 1 N HClaq. (d) CH3I, K2CO3, DMF, rt, overnight. (e) 10% Pd/C, HCOONH4 (10 

eq), MeOH, reflux, 0.5 h, quant. (f) (CF3SO2)2O, 26lutidine, 4-dimethylaminopyridine (0.4 eq), CH2Cl2, 

-40 “C-rt, quant. (g) PhzP(O)H, Pd(OAc)z (10 mol%), DPPP (10 mol%), HCOONa (0.22 eq), EtNjPra 

DMSO, 90 ‘C, 24 h, 93%. (h) HSiC13 (10 eq), Et3N (11 eq), xylene, 100-140 ‘C, 55%. 

Optical resolution of (k)-4 was carried out as described by Diederich et a@ with some modifications. 

Enantiomerically pure (R)-(-)-47,* was obtained in 37% yield based on (f)-4 through clathrate formation with 

quinine followed by acidic aqueous workup. Resolved (R)-4 was treated with methyl iodide, and 

recrystallization of the product from 2-propanol led to enantiomerically pure (R)-(-)-59 in 94% yield. On the 

other hand, preparation of enantiomerically pure (S)-4 was rather difficult by simple recrystallization of the (S)- 

&-quinine complex recovered from the mother liquor. Thus, the crude (S)-4 (ca. 91% ee) obtained by the 
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treatment of the mother liquor with HCl was methylated with CH3I and KzCO3. Recrystallization of S rich 5 

from diethyl ether afforded enantiomerically pure (Q-(+)-59 in 27% yield from (k)-4. 

Catalytic transfer hydrogenation We+10 of (Q-5 afforded (s)-(+)-@I in quantitative yield, which was then 

converted quantitatively to ditriflate (s)-(-)-7.6,12e.13 
Transition metal-mediated functionalization of aryl triflatesI2 seems to be very atnactive method for the 

conversion of 7 to 8, though the reaction of ditriflate of l,l’-binaphthalene-2,2’-diol with diphenylphosphine 

oxide catalyzed by Pd(OAc)2 /DPPP (DPPP = 1,3-bis(diphenylphosphino)propane)/HCGGNa resulted in the 

replacement of only one of the two trifluoromethanesulfonyloxy groups.t2k Fortunately, however, less 

sterically hindered (S)-7 was successfully converted to diphosphine dioxide (s)-(-)-s~~I~.I~ in very high yield. 

Attempted coupling of (S)-7 with PhZ(H)PBH3 catalyzed by Pd(PPh3)4 16 in acetonitrile was unsuccessful, 

probably due to the formation of only the monosubstituted product followed by decomposition. Reduction of 

(S)-8 to the desired enantiomerically pure (s)-(+)-16.17 was performed by heating (S)-8 with a large excess of 

trichlorosilane and triethylamine in xylene,lg initially at 100 ‘C for 1 h, at 120 “C for 1 h, and finally at 140 “C 

for 6 h. 

For the optical resolution of chiral diphosphine dioxides with C2 chirality, (+)- or (-)-2,3-O- 

dibenzoyltartaric acid has often been used as a resolving agent. 18.19 Compound (+_)-8, however, could not be 

resolved in this way. 

The absolute configurations of (t)-4 and (-)-4 have been assigned as S and R, respectively.2c Since the 

subsequent transformations can be considered to proceed stereospecifically with retention of their 

configurations, the absolute configurations of (+)-1 and (-)-1 were assigned as S and R, respectively. 

Further studies on the applications of this new diphosphine ligand 1 for asymmetric catalysis are in 

progress. 
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